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SUMMARY 
A very simple linearization of the solution to the Riemann problem for the steady supersonic Euler 
equations is presented. When used locally in conjunction with the Godunov method, computing savings by 
a factor of about four relative to the use of exact Riemann solvers can be achieved. For severe flow regimes, 
however, the linearization loses accuracy and robustness. We then propose the use of a Riemann solver 
adaptation procedure. This retains the accuracy and robustness of the exact Riemann solver and the 
computational efficiency of the cheap linearized Riemann solver. Numerical results for two- and three- 
dimensional test problems are presented. 
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1. INTRODUCTION 

Godunov-type methods or Riemann-problem-based shock-capturing methods are a large subset 
of high-resolution methods. They have made a significant impact in Computational Fluid 
Dynamics (CFD) in the last decade.' Their initial success for compressible, time-dependent 
inviscid flows with shock waves has been extended to other hyperbolic flows such as steady 
supersonic and shallow water flows4 and, more recently, to parabolic flows such as the 
compressible Navier-Stokes  equation^.^. These methods are (a) conservative, which means that 
computed discontinuous waves have correct positions, (b) shock-capturing, which means that 
a single numerical method is used throughout the flow field, and (c) Total-Variation-Diminishing 
(or TVD), which means that for the one-dimensional time-dependent and two-dimensional steady 
supersonic cases they are at least second-order-accurate almost everywhere; for other cases it is 
difficult to assess the overall accuracy, but numerical evidence suggests that this might be 
preserved. By virtue of the TVD condition these schemes do not exhibit the spurious oscillations 
near high gradients (e.g. shocks) that are typical of other methods such as those of the artificial 
viscosity type. Godunov-type methods are also very robust and by virtue of property (c) there are 
no arbitrary computing parameters as is the case in traditional artificial viscosity methods. One 
disadvantage relative to these methods, however, is that algorithms are more complex and more 
demanding on processing power, although this latter aspect needs qualifying. Once all computa- 
tional parameters in a typical artificial viscosity method have been fixed, the computation of the 
solution to a specified problem may take about a third of the time required by a Riemann- 
problem-based method. However, the computing and human cost involved in the determination 
of optimal values for the computational parameters in the artificial viscosity method can be 
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significant. This aspect should be considered when assessing the computational efficiency of 
numerical methods. 

Further research on Riemann-problem-based methods aimed at reducing computing costs and 
simplifying algorithms is, however, still needed. The solution of the Riemann problem lies at the 
centre of the computational expense and algorithm complexity. For realistic computations the 
Riemann problem is solved billions of times. For the case of time-dependent ideal flows there are 
several fairly simple approximate Riemann solvers. Even current exact Riemann solvers are quite 
competitive, but for steady supersonic flows the exact Riemann solver is significantly more 
complex than its counterpart in time-dependent gas dynamics. Approximate Riemann solvers 
have been presented by Pandolfi2 and Roe7, but the experience in applying these to realistic 
problems is more limited than that in time-dependent problems. 

The contents of this paper concern the reduction of both the computing cost and algorithm 
complexity of Riernann-problem-based methods for steady supersonic flows in two and three 
dimensions. We present an approximate Riemann solver based on a local linearization of the 
equations in primitive variable form. The solution is direct and involves few and very simple 
arithmetic operations. For flows containing shock waves of moderate strength, i.e. pressure ratios 
of about 10, the numerical results are very accurate and the algorithms are simple and robust. 

For severe flow regimes we advocate the adaptive use of the present Kiemann solver in 
conjunction with the exact Riemann solver, or some other distinctly robust Riemann solver, in 
a single numerical method. To demonstrate the performance of our approach, it is sufficient to 
implement it in the first-order Godunov method,' which is the building block of high-order 
Godunov-type schemes. Here we present results for the first-order Godunov method and the 
Weighted Average Flux (WAF) m e t h ~ d , ~  a second-order TVD technique. Other high-order 
methods can also make use of the present linearized Riemann solver. In fact, for the time- 
dependent Euler equations the corresponding approach" has successfully been used by Quirk ' ' 
in the context of the MUSCL method. 

The rest of this paper is organized as follows. Section 2 deals with the governing equations for 
steady supersonic flow and with the space-marching method. Section 3 presents the linearized 
Riemann solver for the two-dimensional case. Section 4 contains two-dimensional tests. In 
Section 5 we extend the linearized Riemann solver to deal with three-dimensional flows. Test 
problems are also presented. Conclusions and further developments are dealt with in Section 6. 

2. SPACE MARCHING 

The steady supersonic Euler equations can be used to simulate a good variety of flow situations. 
The equations are hyperbolic in the flow direction and thus space-marching methods can be 
deployed directly to evolve the solution downstream. 

2.1. Gouerning equations 

The three-dimensional steady supersonic Euler equations in Cartesian co-ordinates are 

F ,  + G, + H ,  = 0. 

where the vector-valued flux functions are 
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Here p is the density, p is the pressure, u, v and w are the x-, y- and z-components of velocity 
respectively and E is the total energy given by 

E =f-p(u2 + v2 + w Z ) + p e ,  (3) 

where e=e(p,  p )  is the specific internal (or intrinsic) energy, which for ideal gases has the simple 
expression 

e=e(p, P)=PI(Y-l)P, (4) 

with y denoting the ratio of specific heats. 
Computationally, the three-dimensional equations may be treated via the method of fractional 

steps," which is a sequence of pseudo-two-dimensional problems. The basic algorithm therefore 
relies on the two-dimensional case 

F ,  + G ,  =0, ( 5 )  

with flux functions 

Since discontinuous solutions such as shock waves and slip surfaces are to be admitted, we 
replace the differential form (5) by the more general integral form 

( F  dy - G dx)=O. f (7) 

The integral is to be evaluated over the boundary of the appropriate control volume. In numerical 
methods this will be a computational cell. 

2.2. Spare marching via consercative metho4 

if the Mach number M is greater than unity, where 
Equations (5 )  are a set of hyperbolic conservation laws provided that the flow is supersonic, is .  

M = [ (u2 + .2)/a2] 

a = J ( Y P / P ) .  (9) 

(8) 

and a is the sound speed given by 

Consider the computational set-qp of Figure 1. Data are given along x =x, and we propose to 
evolve the solution in the x-direction to position x,+ A computational cell i has dimensions Ax 
by Ay, where the cell width Ay is chosen on accuracy and computational grounds and the step size 
Ax is chosen on stability grounds. Direct evaluation of (7) over the control volume ABCD of 
Figure 1 gives 

where Gi+1/2 is the numerical approximation to the physical flux function G at the interface 
between cells i and i + 1. Having obtained the updated vector F:+' according to the conservative 
scheme (lo), one computes the physical variables as follows. First we set 
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Figure 1. Computational set-up for space marching. Evaluation of conservation laws in control volume ABCD gives 
explicit, conscrvative marching procedure 

F;" = [Fl, F 2 ,  F 3 ,  F4]', with the obvious notation for the components of the updated vector. 
Manipulations of the four resulting equations give a single quadratic for the density, 

c ,  p2 - 2 c 2 p  -c3  =o, (1 1) 

c1 = ( F : I F , - 2 F 4 ) / F l ,  c2 = - YF2 /(Y - I)? ~ 3 = ( y + l ) F : / ' ( y - 1 ) .  (1  2) 

(13) 

where the coefficients are 

The physically meaningful solution of (1 1) is 

p = re2 + (c;+ c1c3p2]/c1.  

The other unknowns follow as 

u = F l / p ,  a = F 3 / F I ,  p =  F2 - F I / P ,  E z p F 4 I F l - p .  (14) 
This completes the space-marching procedure using any conservative method with numerical 
flux G i + l , 2 .  

3. THE LINEARIZED RIEMANN SOLVER 

Riemann-problem-based methods use the solution of local Riemann problems to compute the 
intercell numerical flux Gi+1 ,2  in the conservative scheme (10). In this section we present an 
approximate solution to the Riemann problem. 

The solution of the Riemann problem for the two-dimensional steady supersonic Euler 
equations is depicted in the y-x plane of Figure 2. It is analogous to the time-dependent 
one-dimensional case; here x is the marching direction. There are three waves present; the left and 
right waves can be oblique shocks or Prandtl-Meyer expansions, while the middle wave is always 
a slip line. There are therefore four possible wave patterns. 

In carrying out the linearization, there is some freedom in selecting the appropriate variables. 
Here we select density p ,  velocity components u and a and pressure p .  Other possible choices are 
p ,  flow angle c1, Mach number M (or sound speed a) and pressure p .  Manipulations of equations 
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Figure 2. Structure of solution of Riemann problem for steady supersonic Euler equations in y-x plane. There are three 
waves separating four constant regions. Region star is key to solution procedure 

(5) and (6) give 

A W, + B Wy =0, (1 5)  

where 

It is convenient to express (1 5 )  as 

w,+cw,=o, C = A - ‘ B ,  

where the matrix C is found to be 

with d = u2 - a2. The eigenvalues of C are 

uv - a2q u uv + a2q 
23 =- 

d ’  
II =- &=-=A4, 

d ’  U 

where q = ( M 2  - 1)1/2 is assumed real (flow is supersonic) for hyperbolicity. The corresponding 
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right eigenvectors are 

r -p(v-uq) i r p- 
- 

, R4=[' P U  

U 

- 0 

r p(v+uq) i 

We now assume a local linearization of system (17) so that the coefficient matrix C is a constant 
matrix that can be expressed in terms of the data left and right of the initial discontinuity. This is 
accomplished by assuming average values f, where r is any of the components of the vector W. 
The objective is to find the complete solution in the star region shown in Figure 2. Using standard 
techniques for linear hyperbolic  system^,'^ we find the solution for the Riemann problem 
explicitly. Use of the generalized Riemann invariants across the left, right and middle waves gives 
the following set of simultaneous equations for the seven unknowns p*, u:, v;, p:, u:, v: and p: : 

pL*-p*/a2=pL-pL/a2, (21) 

U: + cx I p* = UL + ~ ( 1  PL, (22) 

where 

It is convenient to solve for p* first. We do this by taking equation (27) and substituting each of its 
four unknowns in terms of p* using the previous equations. The complete result is 

9 (29) 
* - (UR - v L  + X2PL -a4pR j- u(uR -uL -CX1 P L  - a3PR)/U 

P -  
012 - a4 + fi(a1+ 013)/U 

As average values of f we take 

Other choices are of course possible, but these are the simplest and for slowly varying data are 
sufficiently accurate, as we shall see in later sections. It is interesting to note that for the case of an 
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isolated slip line, i.e. for p*=pL=pR, the present linearization is exact, regardless of the choice of 
average values. One could try a selection of average values so as to exactly recognize isolated 
shock waves or isolated Prandtl-Meyer expansion waves, but this, if possible at  all, might 
produce computationally expensive expressions. 

4. TEST PROBLEMS 

There are essentially two ways of assessing the performance of the present linearization. One is by 
direct comparison of the star values (29)--(35) with those given by the exact solution. The second, 
and perhaps the most relevant to CFD, is by using the linearization in the computation of 
intercell fluxes Gi + , i2  in Godunov-type space-marching methods. 

4.1. The star values 

Here we take two test problems. The variables used are p, u, p and flow angle u, which is derived 
from approximate values of other variables. Table I contains the data values for the two test 
problems. 

Table I1 gives a comparison of results for tests 1 and 2 with the exact solution and the 
percentage error. Results are assessed in terms of pressure, density and Mach number. 

The significance of the Riemann problem is its local use for intercell flux evaluation in 
conservative numerical methods of the form (10). Experience shows that very large errors in the 
star values, of the order of loo%, are permitted before these errors begin to affect the numerically 
computed solution. It is in this context that the errors of Table I1 should be interpreted, where the 
maximum error of 7% can be regarded as satisfactory. It must be emphasized, however, that both 
tests are representative of flows with slowly varying data, the kind of data for which the present 
linearization is expected to be valid. For Severe flow regimes we suggest the use of other more 
robust Riemann solvers (e.g. an exact Riemann solver) in an adaptive fashion. This can be 
implemented in a similar way as done by Toroi4 for the time-dependent Euler equations. 

Table I. Data for tests 1 and 2 

P L  UL PL EL P R  UR P R  aR 

Test 1 2.0 2.0 2.0 90.0 1 .o 2.0 1.0 90-0 
Test 2 2.0 2.0 20 85.0 1-0 2.0 1.0 95.0 

Table 11. Comparison of results for tests 1 and 2 

P* 

Test 1 Exact 1.399 1.550 1.270 1-923 1.459 
Present 1.500 1.643 1.357 1.937 1.478 
Error 7.1 % 6.0% 6-8 Yo 0.7 Yo 1.3 % 

Test 2 Exact 1.074 1.282 1.052 2.100 1-649 
Present 1.115 1.368 I .082 2.160 1.633 
Error 3.7% 6.7% 2.8% 2.8% 1.0% 
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4.2.  Numerical tests in two dimensions 

In this subsection we assess the accuracy of the linearized Riemann solver in the context of 
Godunov-type numerical methods for solving the general initial value problem for the non-linear 
equations (15) or (17). We use two such numerical methods, namely the first-order Godunov 
method* and the WAF method,' a second-order TVD scheme of the Godunov type. As a test 
problem in two dimensions we consider a Riemann problem, the analogue of a shock tube 
problem in time-dependent gas dynamics. Problems of this kind have exact solutions which can 
be used to assess the performance of numerical schemes. We choose a domain -$<y<& and 
initial data 1.0,2.28, 1.0 and 90-0" for p, u, p and flow angle CI respectively to the left of y=O.O, and 
05, 3.35, 0.25 and 90.0" as values for positive y;  y =  1.4; Ay=O.Ol and Ax is chosen from 

1 

-0.5 0.0 0.5 

DENSITY PRESSURE 

1 .o 

0.75 

0.5 

0.25 

-6.5 0.0 0.5 

-0.5 0.0 0.5 -0.5 0.0 0.5 

MACH NO FLOW ANGLE 

Figure 3. Comparison between exact (line) and numerical (symbol) solutions for a Riemann problem test. The numerical 
solution was obtained by the Godunov method using the linearized Riemann solver. Compare with Figures 4 and 5 
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a Courant-like condition with Courant number coefficient 0-8. Transmissive boundary conditions 
are imposed at both ends. 

Figure 3 shows a comparison between the exact solution (line) and the computed solution 
(symbol) using Godunov’s method together with the linearization (1 1)- (1 7) alone. The profile 
shown is that at x=O75 downstream. This problem involves a shock wave, a slip line and 
a Prandtl-Meyer expansion. As expected from Godunov’s method, poor resolution of the main 
features of the solution can be observed. Figure 4 shows the corresponding solution using 
Godunov’s method together with the exact Riemann solver. To plotting accuracy, the numerical 
solution of the linearized Riemann solver is indistinguishable from that obtained using the exact 

1 

-0.5 0.0 0.5 -0.5 0.0 0.5 

DENSITY PRESSURE 

-0.5 0.0 0.5 -0.5 0.0 0.5 

MACH NO R O W  ANGLE 

Figure 4. Comparison between exact (line) and numerical (symbol) solutions for a Riemann problem test. The numerical 
solution was obtained by the Godunov method using the exact Riemann solver. Compare with Figures 3 and 5 
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Riemann solver. Moreover, in this test the computing time for Godunov's method with the exact 
Riemann solver is four times that for Godunov's method with the linearized Riemann solver. 

Figure 5 shows the result using the WAF method with the linearized Riemann solver. The 
quality of the solution is improved all round. The head and tail of the expansion are more 
accurately defined; the shock wave is now resolved with only two interior points as opposed to 
four or five in the Godunov method. The improvement in the resolution of the slip line is even 
more evident, from 13 interior points in the Godunov method to three interior points in the WAF 
method. 

1 

-0.5 0.0 0.5 -0.5 0.0 0.5 

DENSITY PRESSURE 

-0.5 0.0 0.5 -0.5 0.0 0.5 

MACH NO FLOW ANGLE 

Figure 5.  Comparison between exact (line) and numerical (symbol) solutions for a Riemann problem test. The numerical 
solution was obtained by the WAF method using the linearized Riemann solver. Compare with Figures 3 and 4 
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The numerical results support the observation made previously that appreciable errors in the 
computation of the star values in the local Riemann problem do not show at all when used in 
Godunov-type numerical methods. 

5. THREE-DIMENSIONAL FLOW 

Numericaily, the three-dimensional equations (1) are solved either by operator splitting or by the 
finite volume method. In both cases one computes pseudo-two-dimensional Ruxes in the direction 
normal to cell boundaries. Thus for each cell interface we only need consider the split three- 
dimensional case in its normal direction. For simplicity we assume Cartesian geometries and 
select the y-direction for the purpose of illustrating the method. The treatment of the z-direction is 
analogous. The split three-dimensional case in the y-direction reads 

w, + c w,= 0, (37) 

where the coefficient matrix C is given by 

-a2/d  PUld  0 0 -$;I 
tyu 0 1 l P U  . 

0 0 vju 0 
0 -pva2/d pua2/d 0 uvld 

The eigenvalues I., and A 3  are as before and A 2  = E,, = A 5  = vju. The corresponding right eigenvec- 
tors are 

- (a2q - uv) 

0 

It is easily seen that the solution to the Riemann problem with the linearization proposed in 
Section 4 gives exactly the same solution as that of equations (29)-(35) with the addition 

wL 
wR otherwise. 

if y/x  lies to the left of the slip line, .={ 
For the z-direction the problem is the mirror image of that for the y-direction, with the roles of 

the velocity components v and w interchanged. 

5.1. Test problem 

As a three-dimensional test problem we choose initial conditions as shown in Figure 6. The 
inner high-pressure region has data 1.0, 3.35, 0.0, 1.0 and 90.0" for p, u, w, p and flow angle 
D! respectively, while for the outer region we take initial values 0-5, 2.82, 0.0,0.25 and 90.0". The 
mesh used has Ay = Az = 0.01 and Ax is chosen from a Courant number coefficient of 0.8. This 
problem does not have an exact solution but the solution is expected to be symmetric. Also, for 
some distance downstream the problem remains two-dimensional in the neighbourhood of the 
centrelines and exact results can be used to test the numerical solution. Transmissive boundary 
conditions are used throughout. 



184 E. F. TOR0 AND C.-C. CHOU 

Low pressure region 

LOW pressure region 

Figure 6. Computational domain and initial data configuration for three-dimensional test problem. Pressure and density 
are high in inner square 

Figure 7. Computed density contours at distance x = 0.45 downstream. Godunov method is used. Compare with Figure 8 

Figure 7 shows the solution at x=O-45 downstream obtained by the Godunov method. As 
expected from the first-order method, the sharp flow features are badly smeared. Figure 8 shows 
the corresponding solution obtained by the WAF method with a MINMOD-type limiter 
function; a significant improvement in resolution is observed. For this problem we use the 
linearized Riemann solver together with the exact Riemann solver adaptively. 
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Figure 8. Computed density contours at distance x=0.45 downstream. WAF method is used. Compare with Figure 7 

6 .  CONCLUDING REMARKS 

A linearized Riemann solver for the steady supersonic Euler equations has been presented. This 
has been applied, together with two Godunov-type methods, to solve test problems in two and 
three dimensions. The resulting computing savings are significant. The CPU time saving factors 
are four for the first-order Godunov method and three for the WAF method. 

The linearized Riemann solver is not expected to be robust enough for flows containing strong 
shock waves. For such flows we advocate the use of the present Riemann solver together with the 
exact Riemann solver, or some other robust solver, in an adaptive fashion.14 Applications 
indicate that for severe flow regimes, and depending on the mesh size, the linearized Riemann 
solver is used to solve over 99% of all Riemann problems. This means that the resulting adaptive 
algorithms retain the efficiency of the linearized Riemann solver presented in this paper and the 
accuracy and robustness of the exact Riemann solver. 
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